Multi-level Logic Synthesis

Giovanni De Micheli
Integrated Systems Laboratory

I
=
"1
—

LSI

tttttttt d Systems Laboratory

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli - All rights reserved

Module 1

¢ Objectives

AWhat is multi-level logic synthesis
AWhat are the specific goals

A Stepwise transformations

(c) Giovanni De Micheli

Motivation

¢ Multiple-level logic networks "z~

A Semi-custom libraries

ALogic gates versus macro-cells

v More flexibility
v Privilege specific paths on others
v Better performance

¢ Applicable to a large variety of designs

¢ The importance of logic synthesis grew in parallel with the
growth of foundries for the semi custom market

(c) Giovanni De Micheli 3

Circuit model

¢ Logic network

A An interconnection of blocks
v Each block modeled by a Boolean function

A Usual restrictions:

v Acyclic and memoryless
v Single-output functions

¢ The model has a structural/behavioral semantics

A The structure is induced by the interconnection

¢ Mapped network
A Special case when the blocks correspond to library elements

(c) Giovanni De Micheli

Example of mapped network

(c) Giovanni De Micheli

Example of general network

...

4 P =ce+de r=p+a Ss=r+b’ X

g=a+b u=qc+qc +qc z

(c) Giovanni De Micheli 6

Example of general network graph

...

"

AN

Vv \‘7/\/-\ - X }
\CD >/ !
O
‘Q’/g
v_\é

Y 2

(c) Giovanni De Micheli

Network represented by assignments

S QI3
|
=)
|
|
o~

|
<
|
|
Q

|
<
|
!
o

ac + ad + bec + bd + e
q'c+ qcd + qc
a'd+ bd+ 'd+ ae’

v

S
t

u

N € 8 B & 8 &~ ®
|

(c) Giovanni De Micheli

Example of terminal behavior

¢1/0 functional behavior

AVector with as many entries as primary outputs

AEach entry is a logic function

a’ d+bd+c’ d+ae’
a +b’ +ce+de
actad+bc+bd+e
atb+c

(c) Giovanni De Micheli

Network optimization

¢ Minimize maximum delay

A (Subject to area or power constraints)

¢ Minimize area

A Subject to delay constraints

¢ Minimize power consumption

A Subject to timing constraints

(c) Giovanni De Micheli

10

Estimation

¢ Area:

A Number of literals
v Easy, widely accepted, good estimator

¢ Delay:

A Number of stages (under fanout constraint?)
A Gate delay models with wire-loads
A Sensitizable paths

¢ Power

A Switching activity at each node
A Capacitive loads

(c) Giovanni De Micheli

11

Problem analysis

¢ Even the simplest problems are computationally hard

AE.g., multi-input single-output network

¢ Few exact methods proposed
A High complexity

A Practical for small circuits only, but... useful!

¢ Approximate optimization methods

A Heuristic algorithms

A Rule-based methods

(c) Giovanni De Micheli

12

Strategies for optimization

¢ Improve network step by step

A Circuit transformations

¢ Preserve network 1/O behavior

A Exploit environment don ’t cares if desired

¢ Methods differ in:

A Types of transformations applied

A Selection and order of the transformations

(c) Giovanni De Micheli

13

Elimination

¢ Eliminate one function from the network

A Similar to Gaussian elimination

¢ Perform variable substitution

¢ Example:
As=r+b’; r=p+a’;

As=p+a +b’;

(c) Giovanni De Micheli

14

Jv=ad+bd +c'd +ae’ W i

p =ce+de r=p+a s=r+b'—m

t=ac+ad+bc+bd+e {v]

Yq=a+b u=qc+qc +qc —Z]

A v=a'd+bd+ac+ae’ EI

p =ce+de s=pra+b —x] |

t=ac+ad+bc+bd+e [v]

Yq=a+b u=qc+qc +qc ———Z]

Decomposition

¢ Break a function into smaller ones

A Opposite to elimination

¢ Introduce new variables/blocks into the network

¢ Example:
Av=a d+bd+c’ d+ae’

Aj=a +b+c’; v=jd+ae’;

(c) Giovanni De Micheli

16

[w]
[v]

u=qc+qc +qc ——Z]

j = a'tb+c’ jv=jd+ae’ W i

p =cetdel——{r=p+a’ s=r+b —x] i

OO :
\‘/A .
t=ac+ad+bc+bd+e [v] :

Oy H

\
/ Yq=a+b u=q+c — 7]

(c) Giovanni De Micheli

Extraction

¢ Find a common sub-expression of two (or more)
expressions

A Extract new sub-expression as new function

Alntroduce new block into the circuit

¢ Example
Ap=ce+de; t=ac+ad+hbc+bd+e;
Ap=(c+d)e; t=(c+d)(ath)+e;

Ak=c+d; p=ke; t=ka+kb+e;

(c) Giovanni De Micheli

18

A v=2ad + bd +c’'d +ae’

t=ac+ad+bc+bd+e

(w]
p =ce+de r=p+a s=r+b —{x]
Y]

Yq=a+b u=qc+qc +qc ———Z]

[w]
p = ke lr=p+a’ s=r+b —{x]
V]

Yq=a+b u=qc+qc +qc ———Z]

(c) Giovanni De Micheli

Simplification

< Simplify local function

A Use heuristic minimizer like Espresso

A Modify fanin of target node

¢ Example:
Au=q c+qc’ +qc;

AU=(Q*cC;

(c) Giovanni De Micheli

20

v=ad+bd +c'd +ae’ [w]

b =cerde r=pra A@_m
Y]

t=ac+ad+bc+bd+e y

Yq=a+b u=gqc+qc +qc {Z]

Jv=ad+bd+cd+ae W i

p =ce+de r=p+a s=r+b —{Xx]
Y]

t=ac+ad+bc+bd+e y

Yq=a+b u=q+c HE

(c) Giovanni De Micheli

Substitution

< Simplify a local function by using an additional input
that was not previously in its support set

¢ Example:
At=ka+kb+e;
At=kq+e;

ABecause g =a+ b is already part of the network

(c) Giovanni De Micheli

22

A v=a'd+bd+c'd+ae’

%t=ka+kb+e [v] :

Yq=a+b u=qc+qc +qc ——{Z]

[w]
r=p+a s=r+b —x] !
Y]

it=kq+e

u=qgc+qc +qc ——Z]

(c) Giovanni De Micheli

Example — Sequence of transformations

. :
Aj=a +b+c i [j=a+b+c’ V=jd + ae’ w
Ak=c+d § :
As=ke+ta +b | _
At=kqte k=c+df—]t=kq+e y
Au=q+c i [a ,
Av=jd+ae’ q=a+b|Q u=g+c z] ;

(c) Giovanni De Micheli 24

Optimization approaches

¢ Algorithmic approach

A Define an algorithm for each transformation type
A Algorithm is an operator on the network

A Algorithms are sequenced by scripts

¢ Rule-based approach

ARule data base
v Set of pattern pairs

A Pattern replacement is driven by rules
¢ Most modern tools use the algorithmic approach to synthesis,
even though rules are used to address specific issues

(c) Giovanni De Micheli 25

Boolean and algebraic methods

¢ Boolean methods for multilevel synthesis

A EXxploit properties of Boolean functions
AUse don 't care conditions

A Computationally intensive

¢ Algebraic methods

A Use polynomial abstraction of logic function
A Simpler, faster, weaker

AWidely used

(c) Giovanni De Micheli

26

Example

¢ Boolean substitution:
AGiven:h=a+bcd+e; g=a+cd;
AObtain: h=a+bq+e;
ABecause:at+bq+e=a+b(atcd)+e=a+bcd+e;
¢ Algebraic substitution:
AGiven: t=kat+kb+e;qg=a+b;
AODbtain: t=kq + e;

ABecause: kq = ka + kb;

(c) Giovanni De Micheli

27

Module 2

¢ Objective

A Algebraic model
A Algebraic division

A Kernel theory and applications

(c) Giovanni De Micheli

28

Algebraic model

¢ Boolean algebra
AComplement
A Symmetric distribution laws

ADon 't care sets

¢ Algebraic models

ALook at Boolean expressions as polynomials

A Use sum of product forms

v Minimal w.r.to 1-cube containment

A Use polynomial algebra

(c) Giovanni De Micheli

29

Algebraic division

¢ Given two algebraic expressions

A An expression divides algebraically the other

quuotient = fdividend / fdivisor when:

Afdividend = 1:divisor fquotient + fremainder
Afdivisor fquotient #0

A The support of fyisor and fyotient is disjoint

Note that the f,qen and fyis0 are interchangeable

(c) Giovanni De Micheli

30

Example

¢ Algebraic division
Afgiqeng=ac+ad+bc+bd+e
Afgvisor=ath
AThen fquotient =c+dand fremainder= e
because (ath) (c+d) + e = igeng
and {a,b} N {c,d} =0
¢ Non-algebraic division:
Afi=a+bcandf=atbh

AThen (ath) (atc) = f;
but {a,b} N{a,c} #0

(c) Giovanni De Micheli

31

An algorithm for division

¢ Division can be performed in different way

A Straightforward algorithm by literal sorting
v Simple, quadratic complexity

A Advanced algorithm using sorting
v N-logN complexity
ATypically algebraic division runs fast — small-sized problems

¢ Definitions

AA = set of cubes C#, of the dividend. There are |
AB = set of cubes CB. of the divisor. There are n
A Q = quotient; R = remainder

(c) Giovanni De Micheli

32

Example
faividena = actad+bctbd+e; fyisor = atb

¢ A ={ac,ad,bc,bd,e} and B = {a,b}
®i=1:
A CB,=a, D ={ac,ad} and D, = {c,d}
A Then Q ={c,d}
¢ i=2 =n:
A CB,=Db, D ={bc,bd} and D, = {c,d}
A Then Q ={c,d} N {c,d} ={c,d}
¢ Result:
A Q={c,d}and R = {e}

A fquotient =c+dand fremainder =e

(c) Giovanni De Micheli

33

Theorem

¢ Given algebraic expression f; and f;
then f; / f; is empty when either:

Af; contains a variable not in f;

Af; contains a cube whose support is not contained in that of any
cube of f;

Af; contains more terms than f;

AThe count of any variable in f; is higher than in f;

(c) Giovanni De Micheli 34

Algebraic substitution

¢ Consider expression pairs
¢ Apply division (in any order)

¢ If quotient is not void:
A Evaluate area and delay gain

A Substitute fdividend bYJ fquotient + fremainder
where j is the variable corresponding to fy;isor

¢ Use filters based on previous theorem to reduce computation

(c) Giovanni De Micheli 35

Substitution algorithm

SUBSTITUTE(Gn(V,E)){
for (i=1,2,...,|V|{
for (j =1,2,...,|V|;j #i){
A = set of cubes of f;
B = set of cubes of f;
if (A,B pass the filter test){
(Q,R) = ALGEBRAIC_DIVISION(A,B);
if (Q # 9N
fquotient = SUM of cubes of Q;
fremainder = SUM of cubes of R;
if (substitution is favorable)

fi =] fquotient + fremainder;

}

} (c) Giovanni De Micheli

36

Extraction

¢ Search for common sub-expressions

A Single-cube extraction

A Multiple-cube extraction (kernel extraction)

Search for appropriate divisors

¢ Extraction is still done using the original kernel theory of
Brayton and others [IBM]

(c) Giovanni De Micheli 37

Definitions

¢ Cube-free expression

A Expression that cannot be factored by a cube

v A variable is a cube
v A cube is not cube free

A Example:

v a + bc is cube free
v abc and ab + ac are not

Kernel of an expression
A Cube-free quotient of the expression divided by a cube,
called co-kernel
A Note that since divisors and quotients are interchangeable,
kernels are just a subset of divisors

¢ Kernel set of an expression f is denoted by K(f)

(c) Giovanni De Micheli 38

Example

ef=ace+bcet+detg

¢ Trivial kernel search:

A Divide f by a. Get ce. Not cube free

A Divide f by b. Get ce. Not cube free

A Divide f by c. Get ae + be. Not cube free

A Divide f by ce. Get a + b. Cube free. KERNEL!

A Divide f by d. Get e. Not cube free

A Divide f by e. Get ac + bc + d. Cube free. KERNEL!

A Divide f by g. Get 1. Not cube free

A Divide f by 1. Get ace + bce + de + g. Cube free. KERNEL!

¢ K(f) ={ (atb); (ac+bc+d); (acetbce+de+g) }
¢ CoK(f) ={ ce, e, 1}

(c) Giovanni De Micheli

39

Theorem
Brayton and McMullen

¢ Two expressions f, and f, have a common multiple-cube
divisor f if and only if

A There exist kernels k, in K(f,) and k, in K(f,) such that
fy is the sum of two (or more) cubes in k, N k,

¢ Consequences

Alf kernel intersection is void, then the search for common sub-
expression can be dropped

Alf an expression has no kernels, it can be dropped from
consideration

A The kernel intersection is the basis for constructing the
expression to extract

(c) Giovanni De Micheli 40

Example

of =ace+bce+de+g
¢ f,=ad+bd+cde +ge
¢ f,=abc
¢ K(f,) = { (a+b); (actbc+d); (ace+bce+de+g) }
¢ K(f,) = { (a+b+ce); (cd+g); (ad+bd+cde+ge) }
¢ The kernel set of f, is empty
¢ Select intersection (a+b)
Af,=a+b
Af=wce+de+g(
Af =wd +cde + ge
Af,=abc

(c) Giovanni De Micheli

41

Kernel set computation

+ Naive method
ADivide function by the elements of the power set of its support set

AWeed out non cube-free quotients

¢ Smart way

AUse recursion
v Kernels of kernels are kernels

A Exploit commutativity of multiplication

(c) Giovanni De Micheli 42

Recursive algorithm

¢ The recursive algorithm is the first one proposed for kernel
computation and still outperforms others

¢ It will be explained in two steps
AR_KERNELS (with no pointer) to understand the concept
AKERNELS (Complete algorithm)

¢ The algorithms use a subroutine

ACUBES(f,C) which returns the cubes of f whose literals
include those of cube C

AExample: f=ace thce + de + g -- CUBES(f, ce) = ace + bce

(c) Giovanni De Micheli 43

Simple recursive algorithm

R_KERNELS(f){
K=0;
foreach variable x € sup(f){
if (CUBES(f,x)| 2 2) {
C = maximal cube containing x, s.t. CUBES(f,C) = CUBES(f,x);
K=K U R_KERNELS(f/ C);

}
K=KU f;
return(K);

(c) Giovanni De Micheli

44

Analysis

¢ The recursive algorithm does some redundant
computation in the recursion

A Example

v Divide by a and then by b
v Divide by b and then by a

A Obtain duplicate kernels

¢ Improvement

A Exploit commutativity of multiplication

A Keep a pointer to the literals used so far

(c) Giovanni De Micheli

45

Recursive kernel computation

KERNELS(f,j){
K=0;
fori=jton {
if (CUBES(f,x))| 2 2) {
C = maximal cube containing x;,
s.t. CUBES(f,C) = CUBES(f,x;);
if (C has no variable x, , k<i)
K=K UKERNELS(f/C ,i+1);

}
}
K=KUf;
return(K);

(c) Giovanni De Micheli

46

Example

¢ f=ace+hcetde+g

4
4

Literals a and b. No action required

Literal c. Select cube ce

A Recursive call with argument f/ce= a+b. Pointer j = 3+1
A Call considers variables {d,e,g}. No kernel.
A Adds a + b to the kernel set at the last step.

Literal d. No action required.

Literal e. Select cube e

A Recursive call with argument f/e = ac + bc + d. Pointer j = 5+1
A Call considers variables {g}. No Kernel
A Adds actbc+d to the kernel set at the last step of recursion

Literal g. No action required
Add f = ace + bce + de + g to kernel set

K(f) = { (acetbce+de+g),(actbc+d),(a+b) }

(c) Giovanni De Micheli

47

Matrix representation of kernels

of = ace + bce + de +g
¢Incidence matrix
A Cubes vs. variables

¢Rectangle

A Subset of rows/columns with all
entries equal to 1

¢Prime rectangle

ARectangle not included in
another rectangle

¢ A co-kernel is a prime
rectangle with at least two rows
oExample:

A Prime rectangle ({1,2},{3,5})

A Co-kernel ce

(c) Giovanni De Micheli

var a b ¢ d e g
cube |R\C |1 2 3 4 5 6
ace 1 1 0 1 0 1 O
bce 2 O 1 1 0 1 O
de 3 O 0O 0O1 10
g 4 O 0O 0O 0O 0 1

48

Application of kernel methods

Single cube extraction

A Extract one cube from two (or more) sub-expressions [Brayton]

¢ Kernel extraction

A Extract a multiple-cube expression [Brayton]]

¢ Kernel-based decomposition

(c) Giovanni De Micheli 49

Single-cube extraction

Form an auxiliary expression, which is the union (sum) of
all local expression

¢ Find the largest co-kernel

A Corresponding kernel must belong to two (or more) different
expressions

A Use additional variables to tag the expressions

¢ Extract chosen co-kernel

¢ The problem can be well visualized by a matrix
representation and the extraction of a prime rectangle

(c) Giovanni De Micheli 50

Example

‘Expressions:

- f,=ace+hce+de+qg

« f=cde+b
Auxiliary function:

« fx=ace+bce+de+g+cde+b
*Tagging:

* f,.x = Xace + xbce + xde + xg + scde + sb
Co-kernel: ce

. var a b ¢ d e g

After cube extraction cube [ID R\C |1 2 3 4 5 6

ace X 1 1 0O 1 O 1 O

f,=ce bee | x |2 0O 1 1 0 1 0

de X 3 O O O 1 1 o

o f = +h) + + g X | 4 O 0 0 0O 0 1

fx z (a b) de 9 cde s | 5 O 0 1 1 1 0

_ b s 6 O 1 0 0 0 O
of,=zd+bh

(c) Giovanni De Micheli

51

Multiple-cube extraction

¢ We need a cube/kernel matrix

ARelabel cubes by new variables

A Kernels are now cubes in these new variables

¢ Find a prime rectangle

¢ Equivalently, find a co-kernel of the auxiliary expression
that is the sum of the relabeled expressions

(c) Giovanni De Micheli

52

Example

¢ f=ace + bce
A K(f) = {(a+h)}

¢g=ae+be+d
AK(g) = {(atb); (ae +be+d)}

¢ Relabeling: x.,=a; x,=b; x.=ae; x,.=be; x4=d
A Then K(f) ={{xa,xp}} and K(g) = {{X5,Xp},{Xae;Xpe:Xa}}
Af =X X, + X Xy + O Xae Xpe Xg
A CoK(f,,) =X, X,

¢ Go back to original variables

AExtract (a + b) from fand g

(c) Giovanni De Micheli

53

Kernel-based decomposition

¢ There are many different ways of performing decomposition

A Several classic approaches (e.g., Ashenhurst & Curtis)

¢ Algebraic decomposition
AFind good algebraic divisors

A Use kernels and decompose recursively

(c) Giovanni De Micheli 54

Example

¢ Decompose f=ace+hce+de+g

¢ Select kernel ac + bc + d

¢ Decompose as: f=te+g; t=ac+bc+d
¢ Recur on quotient t

¢ Select kernela+ b

¢ Decomposet=sc+d; s=a+bh; f=te+g;

(c) Giovanni De Micheli

55

Summary
algebraic methods

¢ Algebraic methods abstract functions as polynomials

A Polynomial division

¢ Methods are fast and widely applicable

¢ Algebraic methods miss opportunities for optimization

A As compared to Boolean methods

Algebraic transformations are reversible

A Ease transformations back and forward to trade off area and speed

(c) Giovanni De Micheli 56

