
Multi-level Logic Synthesis

Giovanni De Micheli
Integrated Systems Laboratory

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed
© Giovanni De Micheli – All rights reserved

(c) Giovanni De Micheli 2

Module 1

Objectives
What is multi-level logic synthesis
What are the specific goals
Stepwise transformations

(c) Giovanni De Micheli 3

Motivation

Multiple-level logic networks
Semi-custom libraries
Logic gates versus macro-cells

 More flexibility
 Privilege specific paths on others
 Better performance

Applicable to a large variety of designs

The importance of logic synthesis grew in parallel with the
growth of foundries for the semi custom market

(c) Giovanni De Micheli 4

Circuit model

Logic network
An interconnection of blocks

 Each block modeled by a Boolean function

Usual restrictions:
 Acyclic and memoryless
 Single-output functions

The model has a structural/behavioral semantics
The structure is induced by the interconnection

Mapped network
Special case when the blocks correspond to library elements

(c) Giovanni De Micheli 5

Example of mapped network

(c) Giovanni De Micheli 6

Example of general network

(c) Giovanni De Micheli 7

Example of general network graph

(c) Giovanni De Micheli 8

Network represented by assignments

(c) Giovanni De Micheli 9

Example of terminal behavior

I/O functional behavior
Vector with as many entries as primary outputs
Each entry is a logic function

f =

a’d + bd + c’d + ae’
a’ + b’ + ce + de
ac + ad + bc + bd + e
a + b + c

(c) Giovanni De Micheli 10

Network optimization

Minimize maximum delay
 (Subject to area or power constraints)

Minimize area
Subject to delay constraints

Minimize power consumption
Subject to timing constraints

(c) Giovanni De Micheli 11

Estimation

Area:
Number of literals

 Easy, widely accepted, good estimator

Delay:
Number of stages (under fanout constraint?)
Gate delay models with wire-loads
Sensitizable paths

Power
Switching activity at each node
Capacitive loads

(c) Giovanni De Micheli 12

Problem analysis

Even the simplest problems are computationally hard
E.g., multi-input single-output network

Few exact methods proposed
High complexity
Practical for small circuits only, but… useful!

Approximate optimization methods
Heuristic algorithms
Rule-based methods

(c) Giovanni De Micheli 13

Strategies for optimization

 Improve network step by step
Circuit transformations

Preserve network I/O behavior
Exploit environment don’t cares if desired

Methods differ in:
Types of transformations applied
Selection and order of the transformations

(c) Giovanni De Micheli 14

Elimination

Eliminate one function from the network
Similar to Gaussian elimination

Perform variable substitution

Example:
s = r + b’; r = p + a’;
s = p + a’ + b’;

(c) Giovanni De Micheli 15

Example

(c) Giovanni De Micheli 16

Decomposition

Break a function into smaller ones
Opposite to elimination

 Introduce new variables/blocks into the network

Example:
v = a’d + bd +c’d +ae’
 j = a’ + b + c’; v = jd + ae’;

(c) Giovanni De Micheli 17

Example

(c) Giovanni De Micheli 18

Extraction

Find a common sub-expression of two (or more)
expressions
Extract new sub-expression as new function
 Introduce new block into the circuit

Example
p = ce + de; t = ac + ad + bc + bd + e;
p = (c + d) e; t = (c + d) (a + b) + e;
k = c + d; p = ke; t = ka + kb + e;

(c) Giovanni De Micheli 19

Example

(c) Giovanni De Micheli 20

Simplification

Simplify local function
Use heuristic minimizer like Espresso
Modify fanin of target node

Example:
u = q’c + qc’ + qc;
u = q + c;

(c) Giovanni De Micheli 21

Example

(c) Giovanni De Micheli 22

Substitution

Simplify a local function by using an additional input
that was not previously in its support set

Example:
 t = ka + kb + e;
 t = kq + e;
Because q = a + b is already part of the network

(c) Giovanni De Micheli 23

Example

(c) Giovanni De Micheli 24

Example – Sequence of transformations

 j = a’ + b + c
 k = c + d
 q = a + b
 s = ke + a’ + b’
 t = kq + e
 u = q + c
 v = jd + ae’

(c) Giovanni De Micheli 25

Optimization approaches

Algorithmic approach
Define an algorithm for each transformation type
Algorithm is an operator on the network
Algorithms are sequenced by scripts

Rule-based approach
Rule data base

 Set of pattern pairs

Pattern replacement is driven by rules

Most modern tools use the algorithmic approach to synthesis,
even though rules are used to address specific issues

(c) Giovanni De Micheli 26

Boolean and algebraic methods

Boolean methods for multilevel synthesis
Exploit properties of Boolean functions
Use don’t care conditions
Computationally intensive

Algebraic methods
Use polynomial abstraction of logic function
Simpler, faster, weaker
Widely used

(c) Giovanni De Micheli 27

Example

Boolean substitution:
Given: h = a + bcd + e; q = a + cd;
Obtain: h = a + bq + e;
Because: a + bq +e = a + b(a+cd) + e = a + bcd + e;

Algebraic substitution:
Given: t = ka + kb + e; q = a + b;
Obtain: t = kq + e;
Because: kq = ka + kb;

(c) Giovanni De Micheli 28

Module 2

Objective
Algebraic model
Algebraic division
Kernel theory and applications

(c) Giovanni De Micheli 29

Algebraic model

Boolean algebra
Complement
Symmetric distribution laws
Don’t care sets

Algebraic models
Look at Boolean expressions as polynomials
Use sum of product forms

 Minimal w.r.to 1-cube containment

Use polynomial algebra

(c) Giovanni De Micheli 30

Algebraic division

Given two algebraic expressions
An expression divides algebraically the other
 fquotient = fdividend / fdivisor when:
 fdividend = fdivisor fquotient + fremainder

 fdivisor fquotient ≠ 0
The support of fdivisor and fquotient is disjoint

Note that the fquotient and fdivisor are interchangeable

(c) Giovanni De Micheli 31

Example

Algebraic division
 fdividend = ac + ad + bc + bd + e
 fdivisor = a + b
Then fquotient = c + d and fremainder = e

because (a+b) (c+d) + e = fdividend
and {a,b} ∩ {c,d} = Ø

Non-algebraic division:
 fi = a + bc and fj = a+b
Then (a+b) (a+c) = fi

but {a,b} ∩{a,c} ≠ Ø

(c) Giovanni De Micheli 32

An algorithm for division

Division can be performed in different way
Straightforward algorithm by literal sorting

 Simple, quadratic complexity

Advanced algorithm using sorting
 N-logN complexity

Typically algebraic division runs fast – small-sized problems

Definitions
A = set of cubes CA

j of the dividend. There are l
B = set of cubes CB

i of the divisor. There are n
Q = quotient; R = remainder

(c) Giovanni De Micheli 33

Example
fdividend = ac+ad+bc+bd+e; fdivisor = a+b

 A = {ac,ad,bc,bd,e} and B = {a,b}

 i = 1:
 CB

1 = a, D = {ac,ad} and D1 = {c,d}
 Then Q = {c,d}

 i = 2 = n:
 CB

2 = b, D = {bc,bd} and D2 = {c,d}
 Then Q = {c,d} ∩ {c,d} = {c,d}

 Result:
 Q = {c,d} and R = {e}
 fquotient = c + d and fremainder = e

(c) Giovanni De Micheli 34

Theorem

Given algebraic expression fi and fj

then fi / fj is empty when either:
 fj contains a variable not in fi

 fj contains a cube whose support is not contained in that of any
cube of fi

 fj contains more terms than fi

The count of any variable in fj is higher than in fi

(c) Giovanni De Micheli 35

Algebraic substitution

Consider expression pairs

Apply division (in any order)

 If quotient is not void:
Evaluate area and delay gain
Substitute fdividend by j fquotient + fremainder

where j is the variable corresponding to fdivisor

Use filters based on previous theorem to reduce computation

(c) Giovanni De Micheli 36

Substitution algorithm
SUBSTITUTE(Gn(V,E)){
 for (i = 1,2,…,|V|){
 for (j = 1,2,…,|V|;j ≠ i){
 A = set of cubes of fi;
 B = set of cubes of fj;
 if (A,B pass the filter test){
 (Q,R) = ALGEBRAIC_DIVISION(A,B);
 if (Q ≠ Ø){
 fquotient = sum of cubes of Q;
 fremainder = sum of cubes of R;
 if (substitution is favorable)
 fi = j fquotient + fremainder;
 }
 }
 }
 }
}

(c) Giovanni De Micheli 37

Extraction

Search for common sub-expressions
Single-cube extraction
Multiple-cube extraction (kernel extraction)

Search for appropriate divisors

Extraction is still done using the original kernel theory of
Brayton and others [IBM]

(c) Giovanni De Micheli 38

Definitions

Cube-free expression
Expression that cannot be factored by a cube

 A variable is a cube
 A cube is not cube free

Example:
 a + bc is cube free
 abc and ab + ac are not

Kernel of an expression
Cube-free quotient of the expression divided by a cube,

called co-kernel
Note that since divisors and quotients are interchangeable,

kernels are just a subset of divisors
Kernel set of an expression f is denoted by K(f)

(c) Giovanni De Micheli 39

Example

 f = ace + bce + de + g
 Trivial kernel search:

 Divide f by a. Get ce. Not cube free
 Divide f by b. Get ce. Not cube free
 Divide f by c. Get ae + be. Not cube free
 Divide f by ce. Get a + b. Cube free. KERNEL!
 Divide f by d. Get e. Not cube free
 Divide f by e. Get ac + bc + d. Cube free. KERNEL!
 Divide f by g. Get 1. Not cube free
 Divide f by 1. Get ace + bce + de + g. Cube free. KERNEL!

 K(f) ={ (a+b); (ac+bc+d); (ace+bce+de+g) }
 CoK(f) = { ce, e, 1}

(c) Giovanni De Micheli 40

Theorem
Brayton and McMullen

Two expressions fa and fb have a common multiple-cube
divisor fd if and only if
There exist kernels ka in K(fa) and kb in K(fb) such that

fd is the sum of two (or more) cubes in ka ∩ kb

Consequences
 If kernel intersection is void, then the search for common sub-

expression can be dropped
 If an expression has no kernels, it can be dropped from

consideration
The kernel intersection is the basis for constructing the

expression to extract

(c) Giovanni De Micheli 41

Example
 fx = ace + bce + de + g
 fy = ad + bd + cde + ge
 fz = abc
 K(fx) = { (a+b); (ac+bc+d); (ace+bce+de+g) }
 K(fy) = { (a+b+ce); (cd+g); (ad+bd+cde+ge) }
 The kernel set of fz is empty
 Select intersection (a+b)

 fw = a + b
 fx= wce + de + g
 fy = wd + cde + ge
 fz = abc

(c) Giovanni De Micheli 42

Kernel set computation

Naïve method
Divide function by the elements of the power set of its support set
Weed out non cube-free quotients

Smart way
Use recursion

 Kernels of kernels are kernels

Exploit commutativity of multiplication

(c) Giovanni De Micheli 43

Recursive algorithm

The recursive algorithm is the first one proposed for kernel
computation and still outperforms others

 It will be explained in two steps
R_KERNELS (with no pointer) to understand the concept
KERNELS (Complete algorithm)

The algorithms use a subroutine
CUBES(f,C) which returns the cubes of f whose literals

include those of cube C
Example: f = ace +bce + de + g -- CUBES(f, ce) = ace + bce

(c) Giovanni De Micheli 44

Simple recursive algorithm
R_KERNELS(f){
 K = Ø;
 foreach variable x ε sup(f){
 if (|CUBES(f,x)| ≥ 2) {
 C = maximal cube containing x, s.t. CUBES(f,C) = CUBES(f,x);
 K = K U R_KERNELS(f / C);
 }
 }
 K = K U f;
 return(K);
}

(c) Giovanni De Micheli 45

Analysis

The recursive algorithm does some redundant
computation in the recursion
Example

 Divide by a and then by b
 Divide by b and then by a

Obtain duplicate kernels

 Improvement
Exploit commutativity of multiplication
Keep a pointer to the literals used so far

(c) Giovanni De Micheli 46

Recursive kernel computation
KERNELS(f,j){
 K = Ø;
 for i = j to n {
 if (|CUBES(f,xi)| ≥ 2) {
 C = maximal cube containing xi,
 s.t. CUBES(f,C) = CUBES(f,xi);
 if (C has no variable xk , k < i)
 K = K U KERNELS(f / C ,i+1);
 }
 }
 K = K U f;
 return(K);
}

(c) Giovanni De Micheli 47

Example

 f = ace + bce+ de + g
 Literals a and b. No action required
 Literal c. Select cube ce

 Recursive call with argument f/ce= a+b. Pointer j = 3+1
 Call considers variables {d,e,g}. No kernel.
 Adds a + b to the kernel set at the last step.

 Literal d. No action required.
 Literal e. Select cube e

 Recursive call with argument f/e = ac + bc + d. Pointer j = 5+1
 Call considers variables {g}. No Kernel
 Adds ac+bc+d to the kernel set at the last step of recursion

 Literal g. No action required
 Add f = ace + bce + de + g to kernel set
 K(f) = { (ace+bce+de+g),(ac+bc+d),(a+b) }

(c) Giovanni De Micheli 48

Matrix representation of kernels
f = ace + bce + de +g
Incidence matrix

Cubes vs. variables
Rectangle

Subset of rows/columns with all
entries equal to 1

Prime rectangle
Rectangle not included in

another rectangle
A co-kernel is a prime
rectangle with at least two rows
Example:

Prime rectangle ({1,2},{3,5})
Co-kernel ce

(c) Giovanni De Micheli 49

Application of kernel methods

Single cube extraction
Extract one cube from two (or more) sub-expressions [Brayton]

Kernel extraction
Extract a multiple-cube expression [Brayton]]

Kernel-based decomposition

(c) Giovanni De Micheli 50

Single-cube extraction

Form an auxiliary expression, which is the union (sum) of
all local expression

Find the largest co-kernel
Corresponding kernel must belong to two (or more) different

expressions
Use additional variables to tag the expressions

Extract chosen co-kernel

The problem can be well visualized by a matrix
representation and the extraction of a prime rectangle

(c) Giovanni De Micheli 51

•Expressions:
• fx = ace + bce + de + g
• fs = cde + b

•Auxiliary function:
• faux = ace + bce + de + g + cde + b

•Tagging:
• faux = xace + xbce + xde + xg + scde + sb

•Co-kernel: ce
•After cube extraction

• fz = ce
• fx = z (a+b) + de + g
• fs = zd + b

Example

(c) Giovanni De Micheli 52

Multiple-cube extraction

We need a cube/kernel matrix
Relabel cubes by new variables
Kernels are now cubes in these new variables

Find a prime rectangle

Equivalently, find a co-kernel of the auxiliary expression
that is the sum of the relabeled expressions

(c) Giovanni De Micheli 53

Example

 f = ace + bce
K(f) = {(a+b)}

g = ae + be + d
K(g) = {(a+b); (ae +be+d)}

Relabeling: xa=a; xb=b; xae=ae; xbe=be; xd=d
Then K(f) ={{xa,xb}} and K(g) = {{xa,xb},{xae,xbe,xd}}
 faux = f xa xb + g xa xb + g xae xbe xd

CoK(faux) = xa xb

Go back to original variables
Extract (a + b) from f and g

(c) Giovanni De Micheli 54

Kernel-based decomposition

There are many different ways of performing decomposition
Several classic approaches (e.g., Ashenhurst & Curtis)

Algebraic decomposition
Find good algebraic divisors

Use kernels and decompose recursively

(c) Giovanni De Micheli 55

Example

Decompose f = ace + bce + de + g

Select kernel ac + bc + d

Decompose as: f = te + g; t = ac + bc + d

Recur on quotient t

Select kernel a + b

Decompose t = sc + d; s = a + b; f = te + g;

(c) Giovanni De Micheli 56

Summary
algebraic methods

Algebraic methods abstract functions as polynomials
Polynomial division

Methods are fast and widely applicable

Algebraic methods miss opportunities for optimization
As compared to Boolean methods

Algebraic transformations are reversible
Ease transformations back and forward to trade off area and speed

